A Metric Inequality for the Thompson and Hilbert Geometries
نویسندگان
چکیده
There are two natural metrics defined on an arbitrary convex cone: Thompson’s part metric and Hilbert’s projective metric. For both, we establish an inequality giving information about how far the metric is from being non-positively curved.
منابع مشابه
Variational inequalities on Hilbert $C^*$-modules
We introduce variational inequality problems on Hilbert $C^*$-modules and we prove several existence results for variational inequalities defined on closed convex sets. Then relation between variational inequalities, $C^*$-valued metric projection and fixed point theory on Hilbert $C^*$-modules is studied.
متن کاملA more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملOn a Hardy-Hilbert-Type Inequality with a General Homogeneous Kernel
By the method of weight coefficients and techniques of real analysis, a Hardy-Hilbert-type inequality with a general homogeneous kernel and a best possible constant factor is given. The equivalent forms, the operator expressions with the norm, the reverses and some particular examples are also considered.
متن کاملAn extended multidimensional Hardy-Hilbert-type inequality with a general homogeneous kernel
In this paper, by the use of the weight coefficients, the transfer formula and the technique of real analysis, an extended multidimensional Hardy-Hilbert-type inequality with a general homogeneous kernel and a best possible constant factor is given. Moreover, the equivalent forms, the operator expressions and a few examples are considered.
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کامل